
Predictive Modeling of Small Molecule Binding

Affinity through a NequIP-based Equivariant

Neural Network

Vladislav Cherdantsev

1 Introduction and Background

Accurately predicting protein-ligand interactions is critical in drug design where
even small improvements can lead to significant advancements in therapeutic de-
velopment. In recent years, the integration of deep learning models has emerged
as a promising approach to address this challenge.1 Leveraging 3D structures
of protein-ligand interactions as input data, these models have shown potential
in providing precise predictions of binding affinity, offering a cost-effective and
efficient alternative to traditional experimental assays.2

Despite significant advancements, certain areas of drug discovery still face great
challenges. Tuberculosis (TB) drug discovery, for instance, has encountered lim-
ited success over the past five decades, yielding only two FDA-approved drugs.
The development of effective treatments for TB is particularly challenging due
to factors such as drug resistance and the complex biology of the Mycobacterium
tuberculosis bacterium. One potential avenue for TB drug discovery involves tar-
geting specific proteins within the bacterium. For example, β-ketoacyl synthase
KasA has emerged as a promising target with a characterized bound inhibitor
structure.

In an effort to improve the predictive accuracy of small molecule binding affin-
ity and address the challenges in tuberculosis (TB) drug discovery, this study
introduces an equivariant neural network based on NequIP3 that predicts phar-
macokinetic data pertaining to a series of congeneric ligands targeting KasA.
Training of this model is conducted on a dataset comprising approximately 300
small molecules with known binding poses. These poses were obtained through
biological assays, mapping to known binder structures, and molecular dynamics
(MD) energy minimization. More specifically, the neural network predicts the
area under the concentration-time curve (AUC), a pharmacokinetic metric that
quantifies the total exposure to a drug over a specified time period, from the
3D structures of the ligands.

1

2 Related Work and Methods

NequIP

For this project, I selected NequIP3 as the base model. The architecture of
NequIP is illustrated in Figure 1.

Figure 1: (A) The NequIP network architecture. (B) The structure of the
Interaction Block. (C) The structure of the Convolution Layer.

The NequIP model takes as input 3D molecular graphs, which are characterized
by a set of atomic numbers {Zi} and atomic positions {r⃗i}. The model aims
to predict a scalar value representing the total potential energy of the system,
computed as the sum of atomic potential energies:

Epot =
∑

i∈Natoms

Ei,atomic

Here, the per-atom energies Ei,atomic are the scalar outputs predicted by an
equivariant message-passing neural network, which will be further described.
Despite the predicted potential energy being invariant under translations, reflec-
tions, and rotations, the network incorporates internal features that transform
as geometric tensors and are equivariant to rotation and reflection, making the
model more expressive.

Embedding

The forward pass of the data starts with the Embedding block (Figure 2).
Within this block, the atomic numbers (a categorical feature) are one-hot en-
coded and then passed through an Atomwise Linear layer, which transforms the
encodings into embeddings, usually of higher dimensions. These chemical em-
beddings derived from the atomic numbers serve as initial node features, with
their dimensionality determined by the multiplicity of the node features’ scalar
irreps, which is a hyperparameter we can adjust. For example, setting the num-
ber of node feature irreps that transform as scalars to 32 (denoted as ’32x0e’ in
the e3nn4 notation) would yield output embeddings with a dimensionality of 32
for this Atomwise Linear layer.

2

Figure 2: The structure of the Embedding Block

In the next step, the edge vectors {r⃗ij} are derived from the atomic positions
{r⃗i} and then processed through a SphericalHarmonicEdgeAttrs layer to ob-

tain the spherical harmonic projections Y
(l)
m (r̂ij) of the edge vectors up to the

maximum rotation order lmax, which can be adjusted as a hyperparameter. Ad-
ditionally, the edge lengths, calculated as the magnitudes of the edge vectors,
are fed into a trainable RadialBasisEmbedding layer denoted as B to generate
basis embeddings of the interatomic distances. The dimensionality of this basis
embedding, denoted as Nb, is a hyperparameter typically set to 8. The basis em-
beddings in NequIP are derived from radial Bessel functions and a polynomial
envelope function fenv:

B(rij) =
2

rc

sin
(

bπrij
rc

)
rij

fenv(rij , rc) ∈ RNb

where rij represents the interatomic distance, while rc denotes a local cutoff
radius that confines interactions to atoms closer than a specified cutoff distance.
The polynomial envelope function fenv is defined as:

d =
rij
rc

fenv(d, p) = 1− (p+ 1)(p+ 2)dp + p(p+ 2)dp+1 − p(p+ 1)dp+2

with p = 6 operating on the interatomic distances normalized by the cutoff
radius

rij
rc
. At network initialization, the Bessel roots are set as b = [1, 2, . . . , Nb],

and we subsequently optimize bπ via backpropagation rather than keeping it
constant.3

Interaction Block

The next block of the model is the Interaction Block (Figure 1B), which starts
with a Self-Interaction layer implemented through e3nn’s Linear module4 de-

3

signed to be equivariant to O(3). This Self-Interaction block learns and uses
different weights for different rotation orders l = 0, 1, 2, . . . (but the same weights
are used for every m for a given order) to preserve the symmetry of the feature
irreps. For example:

e3nn.Linear(”4x0e+16x1o”, ”8x0e+8x1o”) = concat (W1 · input[: 4], W2 · input[4 :])

In the first Interaction Block, where only l = 0 features are present (the chemical
embeddings described earlier; e.g., ”32x0e”), this ‘e3nn.Linear‘ layer operates
just like a standard linear layer and does not have any distinct functionality.
However, as higher-order tensor features are introduced in subsequent blocks,
the use of separate weights for different l values becomes crucial for maintaining
equivariance throughout the model.

Convolution

Following the Self-Interaction layer, the Interaction Block has a Convolution
layer (Figure 1C). Convolution operations inherently possess translation and
permutation invariance,3 but to achieve rotation-equivariant convolution, it’s
necessary to use rotation-equivariant filters. To ensure this property, we con-
strain the filters to be products of learnable radial functions and spherical har-
monics:5

F (l)
m (r⃗ij) = R(rij)Y

(l)
m (r̂ij)

The radial function R(rij) is realized through a multi-layer perceptron and
outputs the radial weights for all subsequent filter-feature tensor production in
‘e3nn.o3.TensorProduct‘:

R(rij) = Wnσ (. . . σ (W2σ (W1B(rij))))

Both Y
(l)
m (r̂ij) and B(rij) were obtained in the previous Embedding block. Fil-

ters following this structure inherit the transformation property of spherical har-
monics under rotations because R(rij) is rotationally invariant, and all learnable
weights in the filter belong to R(rij).

Finally, using these filters, the convolution combines the product of the radial

function R(rij) and the spherical harmonics Y
(l)
m (r̂ij) with neighboring features

in an equivariant manner via a tensor product, thereby generating more scalar
and higher-order tensor features:4

f ′
i =

1√
z

∑
j∈N (i)

fj ⊗ (R(rij))Y
(l)
m (r̂ij)

where:

4

• f ′
i are the updated node features

• fj are the input features of the neighboring nodes

• N (i) is the set of neighbors of the node i

• z is the average number of neighbors of a node

• R(rij) are the radial weights described above

• a⊗ (w)b is a tensor product of a with b parametrized by weights w

To better understand how the tensor product of irreps is computed, let’s consider
u(l1) ∈ R2l1+1 and v(l2) ∈ R2l2+1. Then u(l1) ⊗ v(l2) = (u⊗ v)(l) ∈ R2l+1 can be
calculated using Clebsch-Gordan coefficients denoted with C:

(u⊗ v)(l) =

l1∑
m1=−l1

l2∑
m2=−l2

C
(l,m)
(l1,m1)(l2,m2)

u(l1)
m1

v(l2)m2

Specifically, the tensor product between an input feature of order l1 and a
convolutional filter of order l2 yields irreducible representations of output orders
|l1 − l2| ≤ l ≤ |l1 + l2|, which in NequIP are constrained to have a maximum
rotation order lmax. All of this functionality is conveniently implemented in
‘e3nn‘4 as the ‘e3nn.o3.TensorProduct‘ class.

After this convolution, the node features undergo another pass through a Self-
Interaction layer, as described earlier. Subsequently, the updated node features
might also be added to the node features from the previous block via a ResNet-
style skip-connection (Figure 1B). Whether this skip-connection occurs or not is
determined by a hyperparameter. Lastly, the combined features are processed
by an equivariant SiLU-based gate nonlinearity6 facilitated by ‘e3nn.nn.Gate‘.
Scalar features are exempt from gating and are processed directly by SiLU
instead.

Output Block

After a sequence of Interaction Blocks, the features corresponding to l = 0
from the final convolution are directed to an Output Block (Figure 1A). This
Output Block comprises two Atomwise Linear self-interaction layers that yield
atomic energies Ei,atomic, which are then aggregated (summed) to output the
total predicted energy of the system.

Dataset and Data Featurization

In the dataset under investigation, the predicted value is also a single scalar,
but it denotes the area under the concentration-time curve (AUC), a pharma-
cokinetic metric quantifying the total exposure to a drug over time.

5

The primary distinction of my model from NequIP lies in its input structure.
While NequIP solely relies on atomic numbers as input, my model incorpo-
rates additional information, including slightly different atom types and partial
atomic charges. These atom types were assigned based on the General Amber
Force Field (GAFF)7 parametrization by a program called ACPYPE.8 Unlike
atomic numbers, these atom types encode details about chemical bonds and the
chemical environment of each atom. A selection of these atom types with their
definitions in GAFF is provided in Table 1. Across all ligands in my dataset,
the total number of these atom types was 22 compared to the 7 atomic num-
bers. The partial charges on atoms were determined using the AM1-BCC charge
scheme, also using ACPYPE.

Table 1: GAFF atom types and their definitions.

After preprocessing the ligands and obtaining the new atom types and partial
charges, the atom types were one-hot encoded as before and then concatenated
with the partial charges to form node features to be passed through the first
Atomwise Linear layer in the Embedding Block (Figure 2). Additionally, a
hyperparameter optimization was conducted over the parameters listed in Table
2 to determine the setup that yields the highest accuracy.

3 Results

Hyperparameter Optimization

In the first experiment, the hyperparameters that achieve the highest accuracy
for NequIP with atomic numbers as input were determined through model train-
ing and validation. This process involved plotting train/validation loss curves
and comparing R2-scores between the predicted and true values of AUC, which
served as a metric for the model’s accuracy. The train/validation loss curves can
be found in Appendix A, while a summary of the hyperparameter optimization
along with the corresponding R2-scores is provided in Table 2. Hyperparameter
values highlighted in cyan were subsequently utilized in further experiments.

6

Table 2: A summary of the hyperparameter optimization results. Parameters
associated with the highest accuracy are highlighted in cyan. The table includes
the parameters specified below.

• LMAX: The maximum rotation order.

• NUM BASIS: The number of Bessel Radial Bases.

• BNI: Base number of irreps.

• INVARIANT LAYERS: The number of linear layers in the R(rij) MLP.

• INVARIANT NEURONS: The number of hidden neurons in the R(rij)
MLP.

• NUM CONV LAYERS: The number of sequential Interaction Blocks.

• RESNET/USE SC: Indicates whether to apply skip-connection or not.

The hyperparameter that exerted the most pronounced impact on the model’s
accuracy was BNI (base number of irreps), which represents the multiplic-
ity of irreps of each type in hidden layers. For instance, if BNI = 16 and
lmax = 1, the node feature irreps would be ”16x0e” for the Embedding Block
and ”16x0e+16x1o” for the Convolution layer. The need for a smaller number
of irreps in training the data could be attributed to the dataset’s relatively small
size (approximately 300 molecules) and the structural similarities among the lig-
ands. Notably, when larger values of BNI were used, overfitting was observed,
as evidenced by the train/validation curves depicted in Figure 3.

Atom Types and Partial Charges

In the second experiment, the impact of substituting atomic numbers with more
diverse atom types as the model’s input, along with augmenting node features
with partial atomic charges as described in the Methods section, was investi-
gated. The outcomes of these experiments are summarized in Table 3.

7

Figure 3: Plotted train/validation loss curves for BNI = 8 and 64. The plot
for the larger value (on the right) indicates overfitting occurring after around
epoch 20.

Featurization R2-score, average
Atomic Numbers 0.70

GAFF Atom Types 0.76
GAFF Atom Types + Charges 0.79

Table 3: Average R2-scores for the three models.

Both modifications yielded models with higher accuracies. This improvement
could be attributed to the fact that the new atom types inherently capture more
chemically relevant information, especially considering that GAFF is commonly
used to parametrize small molecules for protein-ligand systems in molecular dy-
namics. As a result, their embeddings are better separated in the feature space,
resulting in more accurate predictions. For example, carbonyl and hydroxyl oxy-
gen atoms are now embedded into different vectors, unlike the scenario where
both were assigned the same vector corresponding to the general oxygen atom
based on atomic number.

The inclusion of partial atomic charges additionally resulted in a model with
slightly enhanced predictive ability, while also contributing to stabilizing the
training process (Figure 4). Although the improvement is not notably drastic,
and the resulting R2-scores could still be improved further, these two experi-
ments suggest that additional feature engineering may indeed bolster equivari-
ant models for predicting small molecule binding affinities. Lastly, the model’s
accuracy score may not be very high because the AUC cannot be interpreted as
easily as a sum of individual atom predictions like energy.

8

Figure 4: Train/Validation Loss Curves for the model that uses partial charges
as features (on the left) and the one that doesn’t (on the right).

4 Conclusion

In this study, I explored the effectiveness of equivariant neural network ar-
chitectures (specifically NequIP) in predicting small molecule binding affinity.
Through experimentation, I identified how hyperparameters, atom types, and
partial atomic charges influence the model’s performance. Hyperparameter op-
timization highlighted that a smaller multiplicity of irreps (BNI) leads to better
generalization on a smaller dataset. The introduction of more diverse atom
types and inclusion of partial atomic charges slightly improved predictive ac-
curacy, attributed to their ability to capture finer-grained chemical informa-
tion. Despite modest R2-scores, particularly in predicting the area under the
concentration-time curve (AUC), these models serve as my starting point for fur-
ther exploration and refinement of symmetry-aware models for small molecule
binding affinity prediction in drug discovery.

9

References

[1] Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi
Jaakkola. Diffdock: Diffusion steps, twists, and turns for molecular docking.
arXiv, February 11 2023.

[2] Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres
Cubillos-Ruiz, Nina M. Donghia, Craig R. MacNair, et al. A deep learn-
ing approach to antibiotic discovery. Cell, 180(4):688–702.e13, February 20
2020.

[3] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P.
Mailoa, Mordechai Kornbluth, Nicola Molinari, Tess E. Smidt, and Boris
Kozinsky. E(3)-equivariant graph neural networks for data-efficient and ac-
curate interatomic potentials. Nature Communications, 13(1):2453, May 4
2022.

[4] Mario Geiger and Tess Smidt. E3nn: Euclidean neural networks. arXiv,
July 18 2022.

[5] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li,
Kai Kohlhoff, and Patrick Riley. Tensor field networks: Rotation- and
translation-equivariant neural networks for 3d point clouds. arXiv, May
18 2018.

[6] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus).
arXiv, June 5 2023.

[7] Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman,
and David A. Case. Development and testing of a general amber force field.
Journal of Computational Chemistry, 25(9):1157–74, July 15 2004.

[8] Luciano Kagami, Alan Wilter, Adrian Diaz, and Wim Vranken. The acpype
web server for small-molecule md topology generation. Bioinformatics,
39(6):btad350, June 1 2023.

10

5 Appendix

Train/Test Loss Curves For Hyperparameter Optimization

Figure 5: Train/Test Loss Curve for Hyperparameter Set 1

Figure 6: Train/Test Loss Curve for Hyperparameter Set 2

Figure 7: Train/Test Loss Curve for Hyperparameter Set 3

11

Figure 8: Train/Test Loss Curve for Hyperparameter Set 4

Figure 9: Train/Test Loss Curve for Hyperparameter Set 5

Figure 10: Train/Test Loss Curve for Hyperparameter Set 6

Figure 11: Train/Test Loss Curve for Hyperparameter Set 7

12

Figure 12: Train/Test Loss Curve for Hyperparameter Set 8

Figure 13: Train/Test Loss Curve for Hyperparameter Set 9

Figure 14: Train/Test Loss Curve for Hyperparameter Set 10

13

	Introduction and Background
	Related Work and Methods
	Results
	#⌀ 䌀漀渀挀氀甀猀椀漀�
	Appendix

