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Background and Motivation

Accurately predicting protein-ligand
interactions is paramount in drug
design. In recent years, the advent of
deep learning models has
significantly contributed to
addressing this challenge. Many of
these models leverage 3D structures
of protein-ligand interactions as
input data, enabling more precise
predictions of binding affinity.

Antitubercular drug discovery is one
example of an area that might
benefit from these methods.

TB drug discovery faces limited success, o N,
producing only two FDA-approved drugs in FY\/\S// QN
the last fifty years. One potential target, B- Fol & N \
ketoacyl synthase KasA, has a characterized

bound inhibitor, while another hit molecule

with promi.sir)g efficacy act_s on multiple F\/\/\S//? //©j\//"'
targets within mycobacterial cell wall &N N\
biosynthesis. Our research introduces an

equivariant neural network to predict

antitubercular hit properties from in vitro 0

assays, including minimum inhibitory ,\fb N\#\/\/
concentration (MIC). O

Although our aim is to predict an energy value that remains invariant to rotations and
translations, we may still benefit from the enhanced expressivity offered by symmetry-
aware models. One such successful equivariant model for energy prediction is NequlP,
which utilizes E(3)-equivariant convolutions to handle interactions of geometric tensors.

Z 0 R Z” Orar ’
r Y.(8, ' Y;(0',0")
Ly groak o o gues
Y

P P +c32;: +c31=‘+c30,!, +c3_1s: +c3_2}\+c3_37‘

Although NequlP embeds features solely based on atomic numbers, we sought to
investigate the impact on model accuracy by substituting atomic numbers with more
descriptive atom types and incorporating partial charges into node features. The
atomic numbers are embedded into =0 features, which are refined through a sequence
of interaction blocks, generating scalar and higher-order tensor features:
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Embedding: One-Hot Atom Encoding, Radial Basis Edge Embedding, Spherical
Harmonics Edge Embedding.

Interaction Block: Encodes interactions between neighboring atoms using a
convolution function, combined with linear atom-wise self-interaction layers and a
ResNet-style update, followed by processing through an equivariant SiLU-based gate
nonlinearity.

Output Block: The final convolution's =0 features undergo processing via a couple of
self-interaction linear layers.
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Data and Featurization

GAFF Parametrization 1. 3D Coordinates
+
Preprocessing 2. Partial Charges

3. Atom Types Assigned
by the Force Field

« Binding poses were derived from a

combination of experimental data  AAtom o
and energy minimization techniques.  type Description
- Atom types were assigned according ¢ sp” carbon in C=0, C=S
to the General Amber Force Field ¢2 sp” carbon, aliphatic
(GAFF) parametrization and are 4 sp? carbon, aromatic
distinct from the atomic numbers. ¢ sp! nitrogen
n3 sp° nitrogen with 3 subst.

« Partial charges were determined
using the AM1-BCC charge scheme.

Results and Conclusions

HP Name HP Value | R2score HP Name HP Value | R2score HP Name HP Value | R2score In the fIrSt eXpel’Iment the
LMAX 0 0.63 INVARIANT_LAYERS 1 0.64 RESNET True 0.59
| uss > o - | o | NYPerparameters that
2 0.67 3 0.62 USE_SC True 0.63 achieve the h|ghest
3 063 | INVARIANT_NEURONS 16 0.60 False 0.49 )
4 0.65 32 0.64 BATCH_SIZE 2 056 accuracy for NeqUIP with
NUM_BASIS 6 0.62 64 0.64 5 0.65 : ;
A e 2 2% atomic numpers as input
10 0.58 NUM_CONV_LAYERS 1 0.62 | LEARNING_RATE 1e-2 0.46 were determlned_ R2-
BNI 8 0.71 2 0.64 56-3 0.52 .
oo 3 - — T .. | Scores served as a metric
2 | aeb A o s | o2 | of the model's accuracy.
64 0.57 5 0.69 1e-5 0.52
BNI=8 BNI=64
—— Train Loss —— Train Loss
The hyperparameter that s —— Test Loss —— Test Loss
exerted the most |

pronounced impact on the 7-
model's accuracy was BNI
(base number of irreps) , °
which represents the
multiplicity of irreps of each
type in hidden layers.
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The need for a smaller number of irreps in training the data could be attributed to the
dataset's relatively small size (approximately 300 molecules) and the structural
similarities among the ligands. Notably, when larger values of BNI were used,
overfitting was observed, as evidenced by the train/validation curves.

Both modifications yielded models with

Featurization R2-score, average
higher accuracies. This improvement could )
be attributed to the fact that the new atom Atomic Numbers 0.70
types inherently capture more chemically GAFF Atom Types 0.76
relevant information, especially | GAFF Atom Types + Charges 0.79
considering that GAFF is commonly used
to parametrize small molecules.
The inclusion of \ Without Charge ~ — T2ntos o] With Charge =~ — Tonte
partial atomic ®
charges 7-
additionally
improved the ~ §'
model and 5

stabilized the
training process.
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